Search results for "Metamodeling technique"

showing 2 items of 2 documents

A survey on handling computationally expensive multiobjective optimization problems using surrogates: non-nature inspired methods

2015

Computationally expensive multiobjective optimization problems arise, e.g. in many engineering applications, where several conflicting objectives are to be optimized simultaneously while satisfying constraints. In many cases, the lack of explicit mathematical formulas of the objectives and constraints may necessitate conducting computationally expensive and time-consuming experiments and/or simulations. As another challenge, these problems may have either convex or nonconvex or even disconnected Pareto frontier consisting of Pareto optimal solutions. Because of the existence of many such solutions, typically, a decision maker is required to select the most preferred one. In order to deal wi…

Mathematical optimizationEngineeringControl and Optimizationbusiness.industryPareto principlePareto frontierDecision makerSampling techniqueComputer Graphics and Computer-Aided DesignMulti-objective optimizationComputer Science ApplicationsMultiobjective optimization problemPareto optimalConflicting objectivesBlack-box functionControl and Systems EngineeringMulticriteria Decision Making (MCDM)Computational costNature inspiredMetamodeling techniquebusinessEngineering design processSoftwareStructural and Multidisciplinary Optimization
researchProduct

An interactive surrogate-based method for computationally expensive multiobjective optimisation

2019

Many disciplines involve computationally expensive multiobjective optimisation problems. Surrogate-based methods are commonly used in the literature to alleviate the computational cost. In this paper, we develop an interactive surrogate-based method called SURROGATE-ASF to solve computationally expensive multiobjective optimisation problems. This method employs preference information of a decision-maker. Numerical results demonstrate that SURROGATE-ASF efficiently provides preferred solutions for a decision-maker. It can handle different types of problems involving for example multimodal objective functions and nonconvex and/or disconnected Pareto frontiers. peerReviewed

black-box functionsMathematicsofComputing_NUMERICALANALYSISmetamodeling techniquesachievement scalarising functioninteractive methodsmatemaattinen optimointimultiple criteria decision-making (MCDM)computational costmonitavoiteoptimointi
researchProduct